Product information

ANCAREZ[®] AR555 Waterborne Epoxy Resin

DESCRIPTION

Ancarez AR555 resin is a waterborne solid epoxy resin dispersion delivered at 55% solids in water. It is designed for use in two-component, ambient-cure epoxy systems. Ancarez AR555 resin delivers superior performance at lower cost when compared to conventional solid resin dispersions. The unique nature of Ancarez AR555 resin allows film formation without high levels of coalescing solvent, which enables the formulation of low-odor, zero-VOC systems.

TYPICAL PROPERTIES

Property	Value	Unit	Method
Appearance	Milky white lic	quid	-
Appearance Film	Clear, glossy		
Solids Content	55	wt%	
Solvent	Water		(contains no organic solvents)
Viscosity @ 25°C	200	cPs	Brookfield viscosity, Spindle #3, 12 rpm
Flash Point	> 249	°C	Seta flash, closed cup
Specific Gravity @ 25°C	1.08		Specific Gravity, weight per gallon, and EEW reported on
Weight per Gallon	9.1		as delivered basis
Equivalent Wt/{Epoxy}	550	g/eq	
Equivalent Wt/{Epoxy}	1300	g/eq	*

* Recommended value for use level calculations. In waterborne systems based on solid epoxy resin dispersions, a 60-90% excess epoxy is recommended for maximum corrosion resistance. When EEW of Ancarez AR555 is assumed 1300, the best overall results are obtained in the range of 0.8:1 to 1.2:1 (epoxy:amine) stoichiometry.

ADVANTAGES

- Zero VOC capability
- Fast dry speed: < 30 minutes
- Excellent universal colorant acceptance
- Early water resistance: 2 hours
- Long pot life: > 3 hours
- High gloss
- Zero induction time
- Low resin viscosity
- Low odor
- Lower cost-in-use
- High Corrosion Resistance

APPLICATIONS

- OEM, industrial maintenance, and transportation coatings
- · Anticorrosive primers, mid-coats and topcoats
- Institutional coatings

SHELF LIFE

At least 18 months from the date of manufacture in the original sealed container below 45°C. Store in tightly closed containers away from excessive heat. Do not freeze.

STORAGE AND HANDLING

Refer to the Safety Data Sheet for Ancarez AR555 Resin.

TYPICAL COATING HANDLING PROPERTIES **

Property	Value	Unit	Method
Pot Life	3+	h	
Volume Solids	42	%	
Weight Solids	57	%	
Formulation Viscosity at 25°C	1100	cPs	Brookfield viscosity, Spindle #3, 12 rpm
Clean-Up	Warm, Soapy	Water	

TYPICAL PERFORMANCE **

Property (14-day cure @ 25°C)	Value	Unit	Method
60° Gloss	90		
Pencil Hardness	2H		
1/4 inch Mandrel Bend	180	0	
Direct Impact	40	in-lb	
Reverse Impact	4	in-lb	

** Ancarez AR555 resin formulated with Anquamine 401 curing agent in a high gloss enamel formulation

SUPPLEMENTARY DATA

RESIN CHARACTERISTICS

Ancarez AR555 resin is a unique solid epoxy Dispersion stabilized in water with a nonionic surfactant. It is zero-VOC as supplied, and can be formulated to produce high-performance, zero-VOC, low-odor, two-component epoxy topcoats and ultra-low-VOC two-component epoxy primers for metal and concrete. These coatings exhibit excellent corrosion, weathering and chemical resistance.

Because of its unique nature, Ancarez AR555 resin allows the formulation of waterborne epoxy maintenance primers and topcoats that have the rapid dry characteristics and long pot life of conventional solid waterborne epoxy resin emulsions, without the need for high levels of coalescing solvent typical of these systems. Ancarez AR555 resin formulations accept universal tints readily, providing for easy incorporation of waterbased epoxy coatings into existing product lines.

Evonik offers three waterborne hardeners currently for use in systems based on Ancarez AR555 resin. Those hardeners should be used as follows:

Hardener	Recommended Applications
Anquamine [®] 419 curing agent	Low odor/ Ultra-low VOC metal primers
Anquamine [®] 401 curing agent	Zero-VOC/ Low-odor concrete primers and pigmented metal and concrete topcoats
Anquamine [®] 100 curing agent	Wall and floor coatings and institutional coatings

FORMULATING GUIDELINES

CURING AGENT SELECTION

Anquamine 401 curing agent is recommended where zero-VOC, high-gloss and gloss retention are required. Anquamine 401 curing agent can be thinned with water to retain zero VOC in the finished formulation.

Anquamine 419 curing agent is recommended for Optimum humidity and corrosion resistance. Anquamine 419 curing Agent can be thinned with a mixture of water and propyleneglycol monomethyl ether.

Anquamine 100 curing agent is recommended when low color, stain resistant (good acid and food stain resistance) are required. It provides long pot life, and offers high yellowing resistance.

Both Anquamine 401 and 419 curing agents can be modified with acetic acid to improve water solubility and to extend pot life. Typical use levels are 0.5-2.0% glacial acetic acid based on curing agent weight. Acetic acid levels should be kept to a minimum to avoid negative impact on water resistance.

STORAGE AND STABILITY

Ancarez AR555 resin should be stored between 35 and 105°F (2 and 41°C) for best package stability. Freeze-thaw stability can be enhanced through the addition of glycol ether solvents such as propyleneglycol monomethyl ether or ethyleneglycol monopropyl ether.

STOICHIOMETRY

Best overall results have been obtained in the range of 0.8:1 to 1.2:1 (epoxy:amine). The best corrosion resistance has been observed at 1:1 stoichiometry or with a slight excess of curing agent.

PIGMENTS/PIGMENT DISPERSION

Ancarez AR555 resin can be readily pigmented through the use of pigment dispersants. Best results have been obtained by preparing a resin-free grind in water utilizing Disperbyk 190 (2.5-3.5% based on pigment weight) and Surfynol[®] 420 surfactants (0.1-0.2% based on pigment weight). Ancarez AR555 resin is then added during the let down.

When formulating gloss white enamels, good results have been obtained using a variety of titanium dioxides including: Ti-Pure R-706, Tioxide TR-92, Tronox CR-826, Tronox CR-828, Kronos 2102, Kronos 2310 and Tiona RCL-535. Tronox CR-826 in particular, exhibits good yellowing resistance. Ti-Pure R-960 should be avoided due to reduced gloss in enamels made with this product. Typical PVCs are 15-20%. Gloss can be reduced through the addition of 0.25-0.75 pounds per gallon of low oil absorption talc such as Mineral Technology's P 40-27 or LVT 400.

When formulating primers, PVC should be targeted at and no higher than 32% for optimum corrosion and humidity resistance. Extender pigments such as barytes, talc, Wollastonite and ceramic microspheres should be selected for low oil absorption and good packing characteristics. Calcium Carbonate and zinc oxide should be avoided due to possible interactions with the curing agent. Anticorrosive pigments such as Halox SW 111 or SZP 391 have been effective at boosting corrosion resistance. Typical use levels are 0.5-1.0 lb/gal.

TINTING

Tinted coatings exhibit excellent compatibility and color stability throughout the pot life. Colorant dispersions can be added to the curing agent or the epoxy side, or to the mixed paint without exhibiting pigment flooding, floating or color drift during pot life. Systems found to be effective include: Creanova M 888, M 803, COVON and Elementis WD, UL colorants.

RHEOLOGY MODIFIERS

Rheology modifiers should be pre-diluted in water prior to addition to Ancarez AR555 resin. Diluted rheology modifiers should be added slowly with good mixing to avoid agglomeration.

Associative thickeners such as Rheolate 310, Drewthix 6050 and Acrysol RM 8W are effective at increasing sag resistance and storage stability while maintaining good flow and leveling. Associative thickeners can be added to either the epoxy or the curing agent side of the formulation. When adding to Ancarez AR555 resin, the thickener should be pre-diluted in water and added slowly with good mixing. Typical use levels are 0.5- 1.5% based on total formulation weight.

FOAM CONTROL

Surfynol DF 75, an organic based, 100% active silicone free defoamer, has proven effective as both a grind defoamer and an application defoamer. It should be incorporated into the formulation with high shear. A typical use level is 0.25-0.5% based on total formulation weight. Surface cratering associated with Surfynol DF 75 defoamer can be avoided through the addition of Surfynol 420 surfactant at 0.1-0.2% based on total formulation weight.

FLASH RUST PREVENTION

Flash rusting may occur under conditions of high humidity. Flash rust can be eliminated by the addition of a 10% aqueous solution of sodium nitrite (NaNO₂), or equivalent, to the Part B (curing agent) side in the amount of 2 pounds of solution per 100 gallons of paint.

MIXING AND APPLICATION

Thoroughly mix the A and B side components for 1-2 minutes until a uniform consistency is achieved. For high-gloss finishes, no induction time is needed. However, for maximum humidity and corrosion resistance, allow the mixed paint to induct for 15-30 minutes.

For conventional spray, the mixed paint can be reduced to application viscosity with water.

- A maximum wet film thickness of 8 mils is recommended to allow for water evaporation from the paint film.

- Good air flow across freshly painted areas will assist in water evaporation and improve dry speed.

Typical pot life is 3-6 hours. In gloss enamels, end of pot life is signaled by a visible loss of gloss in the dried film. Paint remains fluid beyond the pot life but loses coalescence and should be discarded. Do not mix expired paint with fresh paint.

To help avoid shocking the system, formulated A and B components should be free flowing liquids of similar viscosity.

CLEAN UP

Application tools can be cleaned with warm soap and water.

STARTING POINT FORMULATIONS

ANCAREZ AR555 EPOXY RESIN/ ANQUAMINE 419 CURING AGENT — TABLE 4: STARTING POINT FORMULATION 4:1 ANTICORROSIVE METAL PRIMER

Nb.	Part A	Pounds	Gallons
1.	Water	123.56	14.80
2.	Disperbyk 190	13.51	1.48
3.	Surfynol DF75 Defoamer	4.13	0.52
4.	Surfynol 420	4.99	0.64
		Mix at slow speed, then add:	
5.	Red Iron Oxide	72.40	1.68
6.	Zeeospheres G400	62.74	3.42
7.	Sparwite Barytes	62.74	1.71
8.	Wollastocoat 10ES	62.74	2.59
9.	Halox SW111	96.53	4.00
10.	Mica White 325	9.65	0.41
	High speed dis	perse to Hegman 6+ Reduce speed then	add:
11.	Ancarez AR555 Epoxy Resin	415.08	45.62
12.	Rheolate 310 (15% in water)	32.18	3.82
		955.0	80.0
Nb.	Part B		
1.	Anquamine 419 Curing Agent	113.43	12.52
2.	Propylene glycol methyl ether	32.82	3.75
3.	De-ionized Water	31.08	3.72
		177.33	20.0

TABLE 5: FORMULATION ATTRIBUTES

Property	Value	Unit
Weight Solids	60.53	%
Volume Solids	46.74	%
PVC	30	%
VOC	137	g/l
Resin Stoichiometry	0.8 : 1 (Epoxy : Amine)	
Part A Viscosity	63	ки
Part B Viscosity	80	ки
Mix Viscosity	65	КU
Pot life	> 6	h

ANCAREZ AR555 EPOXY RESIN/ ANQUAMINE 401 CURING AGENT — TABLE 6: STARTING POINT FORMULATION ULTRA-LOW-VOC 4:1 CLEAR CONCRETE PRIMER

Part A	Pounds	Gallons
Ancarez AR555 Epoxy Resin	655.76	72.06
Add at s	slow speed a premix of:	
Rheolate 310	15.48	1.75
De-ionized Water	51.53	6.19
	722.8	80.0
Part B		
Anquamine 401 Curing Agent	108.54	11.91
De-ionized Water	58.99	7.08
Surfynol DF-75 Defoamer	3.87	0.49
Surfynol 420	3.11	0.40
Glacial Acetic Acid	1.00	0.11
Mix	at medium speed:	•
	175.5	20.0

TABLE 7: FORMULATION ATTRIBUTES

Property	Value	Unit
VOC	Trace	g/l
Mix Viscosity	850	cP
Weight Solids	50.3	%
Volume Solids	41.8	%
Resin Stoichiometry	0.90 : 1 (Epoxy : Amine)	
Part A Viscosity	63	KU
Part B Viscosity	60	KU
Mix Viscosity	77	KU
Pot life	>3	h

ANCAREZ AR555 EPOXY RESIN/ ANQUAMINE 401 CURING AGENT — TABLE 8: STARTING POINT FORMULATION ULTRA-LOW-VOC 2:1 HIGH-GLOSS ENAMEL

Part A	Pounds	Gallons
Ancarez AR555 Epoxy Resin	546.50	60.05
Add at slow spe	ed a premix of:	·
Rheolate 310	12.90	1.46
De-ionized Water	42.94	5.15
	602.3	66.7
Part B		
De-ionized Water	62.15	7.46
Surfynol DF-75 Defoamer	4.01	0.51
Anquamine 401 Curing Agent	64.29	7.06
Glacial Acetic Acid	0.86	0.10
Mix until curing agent is	incorporated, then add:	·
TiPure R-706 Titanium Dioxide	230.03	6.90
Grind to Hegma	n 7+, then add:	
De-ionized Water	47.43	5.70
Anquamine 401 Curing Agent	26.35	2.89
Surfynol 420	2.75	0.35
Mix for 15 min. at slow speed, the	n add at slow speed a premix of	
De-ionized Water	15.35	1.84
Rheolate 310	4.61	0.52
	457.8	33.3

TABLE 9: FORMULATION ATTRIBUTES

Property	Value	Unit
VOC	Trace	g/l
Mix Viscosity	1100	сР
Weight Solids	57.2	%
Volume Solids	41.9	%
PVC	16.5	%
Resin Stoichiometry	0.93 : 1 (Epoxy : Amine)	
Part A Viscosity	64	KU
Part B Viscosity	81	KU
Mix Viscosity	83	KU
Pot life	> 3	h
60° Gloss	101.8	

ANCAREZ AR555 EPOXY RESIN/ ANQUAMINE 100 CURATIVE — TABLE 10: CLEAR COAT FORMULATION

Part A	Pounds	Gallons
Ancarez AR555 Epoxy Resin	606.57	66.67
Part B		
Anquamine 100 curative	265.37	30.28
De-ionized Water	23.05	2.76
Surfynol DF 110D	2.43	0.29
Total B	290.85	33.33
Total A + B	897.42	100.0

TABLE 11: FORMULATION ATTRIBUTES

Property	Value	Unit
Pencil Hardness	н	
60° Gloss	90	
Impact		
Gardner Impact Direct	36	in/lb
Gardner Impact Reverse	20	in/lb
Dry Time		
Set to touch	20	min
Dry to touch	1¾	h
Hard dry	6	h

ANCAREZ AR555 EPOXY RESIN/ ANQUAMINE 100 CURATIVE — TABLE 12: WHITE GLOSS ENAMEL FORMULATION

Part A	Pounds	Gallons
Ancarez AR555 Epoxy Resin	413.63	45.05
Acrysol RM8W	41.36	4.96
Part B		
Anquamine 100 curative	144.77	16.52
De-ionized Water	188.20	22.55
Disperbyk 190	10.34	1.17
Surfynol DF110	4.14	0.50
TiO ₂ – R960	289.54	8.89
Surfynol 420	3.1	0.37
	640.09	50.00

TABLE 13: FORMULATION ATTRIBUTES

Property	Value	Unit
Pencil Hardness	2H	
60° Gloss	63	
Impact		
Gardner Impact Direct	12	in/lb
Gardner Impact Reverse	100	in/lb
Dry Time		
Set to touch	1/4	h
Dry to touch	3⁄4	h
Hard dry	4	h

MAINCOTE AE-58/ ANCAREZ AR555 RESIN — TABLE 14: STARTING POINT FORMULATION ACRYLIC-EPOXY CLEAR COAT

Acrylic Component A	Parts by Weight		
Add the following in the order listed and mix thoroughly:			
Methyl Carbitol	5.7		
Maincote AE-58	72.0		
NH₄OH (28% NH₃)	0.5		
Ektasolve EEH	7.0		
Patcote 550	0.3		
Acrysol RM-1020	1.2		
Acrysol RM-8	0.2		
Sodium Nitrite (15% aqueous solution)	1.3		
TOTAL ACRYLIC COMPONENT A	88.2		
Acrylic Component B			
Ancarez AR555 (Evonik)	11.8		
TOTAL ACRYLIC / EPOXY TOPCOAT	100.0		

MAINCOTE AE-58/ ANCAREZ AR555 — TABLE 15: STARTING POINT FORMULATION ACRYLIC-EPOXY TOPCOAT

Acrylic Component A	Pounds	Gallons
Grind the following materials using a high speed dissolve for	or 20 minutes:	
Methyl Carbitol	39.34	4.56
Tamol 165	13.99	1.59
NH₄OH (28% NH₃)	1.01	0.12
Triton CF-10	1.62	0.19
Patcote 519	0.41	0.06
TiPure R-900	196.39	5.74
Add the following and continue to grind for 2-3 minutes at le	ower speed:	
Water	20.18	2.42
Total Grind	272.94	14.69
Letdown Preparation		
Add the following in the order listed and mix thoroughly:		
Maincote AE-58	499.85	58.05
Water	59.31	7.10
NH₄OH (28% NH₃)	2.43	0.29
Grind (from above)	272.94	14.60
Ektasolve EEH	48.87	6.59
Patcote 531	2.03	0.28
Water	14.40	1.73
Acrysol RM-1020	8.11	0.91
Acrysol RM-8	1.22	0.14
Sodium Nitrite (15% aqueous solution)	8.92	1.07
Total Acrylic Component A	918.08	90.86
Epoxy Component B		
Ancarez AR555	83.14	9.14
Total Acrylic-Epoxy Topcoat	1000.91	100.0

MAINCOTE AE-58/ ANCAREZ AR555 — TABLE 16: ACRYLIC-EPOXY TOPCOAT COATING TEST RESULTS

Test	1/2 h induction — 21-Day Cure	Clear	Topcoat
Substrate	Cold Rolled Steel, Zinc Phosphate, B952		
Primer	None		
Color		Clear	White
	Pot Life/Gel Time (h)	>12	>12
	Thickness (mil)	2.0	2.0
Drying Time (h)	Set-to-Touch	0.25	0.25
	Tack-Free	0.50	0.50
	Dry-Hard	1.00	0.80
	Dry-Through	3.75	3.00
Film Appearance	Gloss (20°)	67.3	33.8
	Gloss (60°)	96.6	77.3
	Gloss (85°)	96.2	93.2
Adhesion	Dry Scrape (kg)	>10.5 kg	>10.5 kg
	Wet Scrape (kg) (24 h/21°C)	3 kg	2 kg
Immersion	Water Immersion (24 h/21°C)	Pass	Pass
	MEK Immersion (r/21°C)	Fail	Soft-Edge Lift
Solvent Resistance	MEK Double Rubs	Pass 200 Slight	Pass 200 Slight
Spot Tests	5% sol. Hydrochloric Acid	No Effect	No Effect
4-h Exposure	5% sol. Sodium Hydroxide	No Effect	No Effect
4-h Recovery	5% sol. Sulfuric Acid	No Effect	No Effect
	5% sol. Nitric Acid	No Effect	No Effect
	Chlorox	No Effect	No Effect
	Mustard	No Effect	No Effect
	Ketchup	No Effect	No Effect
Impact	Gardner Impact (in/lb) Direct	12	96
	Gardner Impact (in/lb) Reverse	4	60
Flexibility	Mandrel Bend	1/8"	1/8"
	Pencil	HB	2H
Hardness	I EIIGII	110	211

TABLE 17: RESIN, PIGMENT AND ADDITIVE SUPPLIERS

Product	Supplier
Acrysol RM-8	Dow Chemical
Ancarez AR555	Evonik
Anquamine [®] 401	Evonik
Anquamine 419	Evonik
Colortrend 800-series Colorants	Colortrend
Disperbyk 190	BYK Chemie
Drewthix 6050	Ashland
Elementis WD, UL	Elementis
Glacial Acetic Acid	Hoechst Celanese
Halox SW 111	Halox Pigments
Mica 325	КМС
P 40-27 Talc	Baretts Minerals Inc.
Red Iron Oxide	Elementis Pigments
Rheolate 310	Elementis
Sparwite Barytes	Mountain Minerals
Surfynol [®] Surfactants	Evonik
TiPure R-706 Titanium Dioxide	DuPont
TR-92 Titanium Dioxide	Huntsman
Wollastocoat 10ES	Nexeo
Zeeospheres 400	3M Company

Ancarez® is a registered trademark of Evonik Industries AG or one of its subsidiaries.

Disclaimer

This information and any recommendations, technical or otherwise, are presented in good faith and believed to be correct as of the date prepared. Recipients of this Information and recommendations must make their own determination as to its suitability for their purposes. In no event shall Evonik assume liability for damages or losses of any kind or nature that result from the use of or reliance upon this information and recommendations. EVONIK EXPRESSLY DISCLAIMS ANY REPRESENTATIONS AND WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, AS TO THE ACCURACY, COMPLETENESS, NON-INFRINGEMENT, MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE (EVEN IF EVONIK IS AWARE OF SUCH PURPOSE) WITH RESPECT TO ANY INFORMATION AND RECOMMENDATIONS PROVIDED. Reference to any trade names used by other companies is neither a recommendation nor an endorsement of the corresponding reduct and does not the information addition and the luority frequence the information addition and any important and the information addition and any information and recommendations. product, and does not imply that similar products could not be used. Evonik reserves the right to make any changes to the information and/or recommendations at any time, without prior or subsequent notice.

EVONIK OPERATIONS GMBH Business Line Crosslinkers Paul-Baumann-Str. 1 45764 Marl Germany

www.evonik.com/crosslinkers Product Information: APCSE@evonik.com CrosslinkersProdinfo@evonik.com Sample Request:

EVONIK CORPORATION

Business Line Crosslinkers 7001 Hamilton Boulevard Trexlertown, PA 18087 USA

APCSE@evonik.com Crosslinkers-Samples@evonik.com

EVONIK SPECIALTY CHEMICALS

(SHANGHAI) CO., LTD. **Business Line Crosslinkers** 55, Chundong Road Xinzhuang Industry Park Shanghai, 201108 China CL-Asiainfo@evonik.com CL-Asiainfo@evonik.com

